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Consider a system obeying conservation of flow, as in classical particle flow or in relativistic quantum
mechanics. In such cases a probability density function p(r|¢) may be used to describe the system, where
1 is particle position and ¢ is time. Let H (¢) be the Shannon form of the Boltzmann entropy correspond-
ing to p(rlt). It is found that (dH /dt)y.,= +1(t)d /dt{r*(1)), where I(t) is the Fisher information
about the centroid of the system, and (r%(¢)) is the time-dependent mean-square particle position. A
corollary is that, for classical particle flow obeying {r) =0, positional uncertainty o(¢) must ever in-
crease with time.
PACS number(s): 05.40.+j, 03.65.Bz, 41.75.Ht, 47.10.+¢g
1. INTRODUCTION Fisher information (1):
— 2 —
The trace of the Fisher information matrix I f dx(dp/dx)"/p , p=p(x). (2b)

1= [dtVp-Vp/p , (1)

is a scalar information quantity that has been shown [1,2]
to derive a host of physical phenomena. [The integration
limits in Eq. (1) and all following equations are under-
stood to be infinite.] This includes such diverse phenome-
na as the complex Schrodinger wave equation, the
Maxwell-Boltzmann distribution law, and Maxwell’s
equations. In Eq. (1), p is a probability density function
p(x) for a coordinate x whose unit demarks the physical
scenario: e.g., a length in quantum mechanics, or a veloc-
ity in classical particle statistics.

Equation (1) has the following meaning. Suppose that
a physical scenario consists of a particle or a system of
particles (as in quantum mechanics or in gas dynamics,
respectively). A particle is measured to be at position y,

y=0+x , (23)

where 6 is (say) the mean particle position and x is a ran-
dom excursion from 6. It is desired to know 0, and so an
estimate of 8 is formed from the data value y. How much
information resides in the observation y about the
sought-after mean 6?

Intuitively, if y is, on average, close to 6, then there is a
large amount of such information in a reading y. Then,
by Eq. (2a), x is small, so that high information implies
small x, on average. The probability density function
(PDF) for x, p(x), should be narrow and peaked about
the origin. Conversely, if p (x) is broad there should be
small information present.

This trend is obeyed by the one-dimensional version of
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[Note: The division by p in the integrand does not cause
problems as p—0. See Egs. (8) and (9) below.] For ex-
ample, if p (x) is Gaussian with variance o2, then Eq. (2b)
gives simply

I=1/0%. (2¢)

Again, a narrow PDF law (indicated by small o) gives
large information I; and a broad PDF gives small I.

Now the width of a PDF measures the degree of disor-
der that exists in predicting a value x. A narrow, highly
peaked PDF indicates small disorder, since most of the
time (predictably) small x will occur. Conversely, a
broad, flattened PDF indicates large disorder.

Hence, quantity I is a dual measure. It indicates both
the degree to which the ideal value of a random variable
may be measure-estimated (to coin a word), and simul-
taneously, the degree of disorder in the variable.

A related measure is H, the Shannon entropy (defined
below) of the system. It is also a dual measure. It mea-
sures the number of distinguishable signals that may be
transmitted by a communication channel [3,4] and the
degree of disorder (thermodynamic disorder, in most
cases) of a system of particles. It is well known that max-
imization of H gives rise to some classical distribution
functions, notably the Boltzmann and Maxwell-
Boltzmann ones [5,6].

Since I and H have analogous statistical properties,
this suggests that extremization of I should perhaps like-
wise derive certain physical distribution functions. In
fact, this is the case [1,2]. It is important, however, to
stress the different origins of the two measures. Informa-
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tion I arises in a measure-estimation channel (described
above), whereas H arises in a communication channel.
The wealth of physical phenomena that follow from ex-
tremization of I perhaps suggests that physical phenome-
na are more expressions of the ability to measure-
estimate than to transmit distinguishable signals. In oth-
er words, physical phenomena arise out of measure-
estimation channels, and not communication channels.

The preceding considerations defined static systems,
i.e., systems whose statistics remain fixed with time. We
next consider systems whose statistics change with time.
If these systems are isolated as well, then they obey an
equation of continuity of flow (see below). We will find
that the resulting flux of particles allow entropy H and
information I to be interrelated. The rate of increase of
entropy will be found to be limited by the available level
of Fisher information I.

II. DISORDER IN STOCHASTIC SYSTEMS

Consider a stochastic system consisting of one or more
particles. Particle position r=(x,y,z) is random, and
specified by a conditional probability law p(r|t). This
represents the probability of a particle at position r, con-
ditional upon (at) time ¢. The broader p(r|t) is (at a fixed
t) as a function of r, the more equally probable are all r
values, and hence, the higher is the state of disorder for
the system at that time. A measure of disorder that has
this property is the Shannon form [3] of the Boltzmann
entropy,

H@=— [ drp(rlt)np(xlt) . (3a)

This is sometimes called ‘“‘communication” entropy, be-
cause of its use in the field of communication theory [4].
For a normal law p(r|t), as in the case of Brownian
motion, where

1 2,02
(r|lt)= - re/204(t) , 3b)
plrle) Vara(t) ¢ (
use of Eq. (3a) gives
H()=3(1+1In27)+31no(t) . (3c)

This shows that H varies monotonically as the “width” o
of p(r|t), which makes sense for a measure of disorder.
Differentiation of (3c) gives

dH/dt=H,=30,/0 (4)
or, identically,

1 dg?
2 dt

3

02

H,= (5)

(We use the convention that letter subscripts denote
derivatives.) The dependence of H, upon the first factor
is intuitive: Both H and o measure the width of p(r|t),
the extent of disorder, so that it is plausible that their
time rates of change should also be proportional.

For general statistics, it will be found that the max-
imum value H™* of H, follows Eq. (5), where more gen-

B. NIKOLOV AND B. ROY FRIEDEN 49

erally, do?/dt is replaced by d(r?) /dt and factor 3/0?
is replaced by I, the trace (1) of the Fisher information
matrix,

I=fdrzyp'—v£ , p=plrlt). (6)

[That I =3 /0 for the Gaussian case (3b) is easily verified
by direct substitution into (6).] The proviso is that the
phenomenon obey properties (a)—(d) listed in Sec. IIL
Quantity I is the information in a single measurement of
particle position about the centroid of the pattern p(r|z).
It is interesting to consider why the derivative H**
might go as I. Mathematically, a similar relation is [7]

H,=1I. (7)

This holds for a probability law p(x), where x =y +z, y
obeys any PDF, y and z are independent, and z is Gauss-
ian with variance v. Relation (7) shows that I can indeed
vary as the derivative of H, and under fairly general con-
ditions. However, a more fundamental physical reason
for such a tie-in is as follows.

We saw above that H is a measure of disorder. In fact,
both H and I are measures of disorder. That I measures
disorder can be seen as follows. Work with a function
g(r|t) obeying

p(rit)=qXrlt) (8)
in (6), which directly gives
I=4[drvq-Vgq . 9)

Hence I measures the gradient content in g (or p). This
ties in with disorder. Consider a function g that is con-
centrated about the point r=0. This exhibits low disor-
der, since then the point r=0 is much more probable
than other points. Also, by normalization property

[drpzln=1, (10)

the function must be very ‘tall’ about r=0. But then it
has large gradient content in this vicinity. Hence, its I
value given by (9) will be large. The result is that low dis-
order is accompanied by a large I. Conversely, and by
the same reasoning, high disorder is associated with a
small I. Thus, I is a monotonic measure of disorder.
(The fact that it is an inverse measure is inconsequential:
this could be remedied by simply working with its nega-
tive.)

Since H and I are both measures of disorder, it is then
not surprising that H or H;™* could be expressed in
terms of I. Another interesting tie-in between H and 7 is
their predilection to derive distribution laws of physics
when extremized (as discussed above). On this basis as
well, it is plausible that I should enter into a limiting ex-
pression for H,.

III. BOUNDARY CONDITIONS
FOR AN ISOLATED SYSTEM

Consider a physical phenomenon involving discrete
particle(s) that are in a general state of motion subject to
the following conditions.
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(a) The particles obey the equation of conservation of
flow,

p,(r|t)+V-P(r,2)=0, (11)

where P is a measure of flow whose exact nature depends
upon the application. Denote the components of
P=(P,,P,,P;). Numbered subscripts denote vector
components, whereas letter subscripts denote derivatives.

(b) The system is isolated, so that there is no net flow
across its boundaries,

P(r,? )|boundaries=0 . (12)

Hence P obeys Dirichlet [8] boundary conditions. Fur-
thermore, if the boundaries are at infinity then

lim P(r,t)=0 (13)

r— o

faster than 1/r2. It is noted that property (12) actually
follows from the assumption of flow [Eq. (11)] and nor-
malization condition (10). This is shown by integrating

(11), dr, to give
—_9
farv-p= atfdrp.

The left-hand side is directly integrable to give P evalu-
ated at the boundaries. Under condition (10) the right-
hand side is zero. The combination gives (12).

(c) There is vanishing probability of a particle being on
the boundary,

p(rlt)[boundaries=0 . (14)

Hence p also obeys Dirichlet boundary conditions. Fur-
thermore, if the boundaries are at infinity,

lim p(r|t)=0, (15)
r— oo
faster than 1/r%. The latter follows from the requirement
(10) for normalization.
(d) Finally, condition (12) is so strong that
Plnplboundarieszo . (16)
That is, P—0 faster than Inp — — « at the boundaries.
On the basis of properties (a)—-(d), the entropy H (¢) of
the system has a time rate of change whose maximum
value H{"**(t) obeys
H,'““"(t)=%l(t)%<r2(t)) . (17)
The proof follows.
IV. DERIVATION

The partial derivative % of Eq. (3a) gives

d
H,=—5fdrplnp

=—fdrp,lnp—fdrp(1/p)p, (18)
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after differentiating under the integral sign. The second
right-hand integral gives

fdrp(l/p)p,=—%fdrp=o

by normalization requirement (10). Next, use the flow
equation (11) in the first right-hand integral of Eq. (18).
This gives

H,= [drV-PInp

Efffdzdydx

3 3
ax (P F 5, (P2)

3
+2-(P5) |Inp . (19)

Consider the first right-hand term in (19). The innermost
integral is

d
fdxa(Pl )Inp=P,Inp [boundan'es_ fdx(Pl /P )P
after integrating by parts,
=0— fdx(P, /PPy

by Dirichlet condition (16). Similar steps follows for the
second and third right-hand terms in Eq. (19). The result
is

H=—[drP-Vp/p . (20)
This is identical to
H=—[dr(®/Vp ) (Vb Vp/p). (21)

Hence H, is expressed as the inner product over space
dr of two vectors (P/Vp) and (Vp Vp/p). By the
Schwarz inequality, the magnitude of H, is maximized
when the two vectors are parallel, i.e., when each com-
ponent in r space is proportional:

P/Vp=aVpVp/p, a=alt). (22)

Since the space of r does not include coordinate ¢, a is in
general a function of ¢. Equation (22) simplifies to

P=aVp . 23)

Substituting form (23) for P into Eq. (21) gives its max-
imum value,

max=—g [drVp-Vp/p=—al (24)

by definition (6). Thus the maximum rate of entropy in-
crease for an isolated system is limited by the Fisher in-
formation level. Quantity a(z) is next related to the
width of p(r|t).

V. EVALUATION OF FACTOR a (1)
By Eq. (23),
P-r=aVp-r.

Integrating this dr gives
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fdrP‘r=a fdr Vpr

Eafffdz dy dx(pyx+p,y+p,z) . (25)
Consider the first right-hand term. Integrating by parts,
fdx PxX =XP lvoundaries — fdx p(x,y,z(1)

=0—p(y,z|t)
by Dirichlet properties (14) and (15). Then
fffdzdydxpxe—ffdydzp(y,zit)=—-l .

(26)

Similar identifies hold for the second and third right-
hand terms of (25). The result is that

fdrP-r= —3a
or

a=—1[drPr. @7

The latter integral is now shown to be related to the
second moment of the law p(r|z),

(r2)=fdrr2p(r|t) . (28)

Differentiate this as

by flow Eq. (11),
E—fffdzdydx(x2+y2+zz)

aP, " opP, + apP,
ox ay oz

29)

Consider the contribution of term x? to the integral.
First, regard its product by dP,/0dx. Integrating by
parts,

3P,
fdx xz*gzxzpllboundaries —2fdx xPl
:()—2fdx xP, (30)

by boundary conditions (12) and (13). Next, regard the
contribution of term x*3P, /dy in (29). Switching the or-
der of integration, we first integrate

[a 292 ap | =0 31
y X ay X "7 lboundaries 31

by boundary conditions (12) and (13). The term
x29P, /3z will contribute zero in the same way.
Likewise the term y? contributes

—2fdny2

to the integral dy [compare with (30)], etc. for the term in
z2. The result is that

) _
-a—t(rz)—ZfdrP-r. (32)

We may now combine results. By Egs. (27) and (32),

a=a(t)= —%%(rz(t))= —%&d—t

The partial derivative becomes the ordinary derivative in
this single argument ¢ case. Then Eq. (24) becomes

dH™(t)
dt

(rae)) . (33)

=174 ¢(,2
10— (ri) . (34)

This shows that the rate of increase of entropy is limit-
ed jointly by two effects: (i) the rate of expansion of the
width of distribution p(r|t); and (ii) the Fisher informa-
tion in p(r|¢). The latter is, in particular, the information
in a single data position reading about the centroid, or
mean, position in the pattern p(r|z). This information
varies with time, as the pattern p(r|¢) changes its shape.

Regarding shape, an interesting corollary of Eq. (34)
follows when H, the Shannon entropy (3a), is also the
Boltzmann entropy for the system. Then H obeys the
second law of thermodynamics, so that the left-hand side
of (34) is positive (or zero). Also, by definition (6), so is I.
Then (34) gives

2 ()20, (35)

This states a general theorem about the motion of (now)
thermodynamic particles in an isolated system obeying
continuity of flow. The particle mean-square spread must
increase, or remain fixed, at each instant of time. It can
never decrease toward the origin.

V1. APPLICATION TO CLASSICAL PARTICLE FLOW

Consider an isolated system of one or more material
particles moving under the influence of mutual attraction
or repulsion, due to gravitational, electrical, or other
properties. The particles may also collide with each oth-
er and/or with the walls of a confining container. If the
particles are confined to a container, then the container
walls are physical boundaries for the system. In this
scenario the flow vector is [9]

P(r,t)=p(r|t)v(r,t), (36)

where v is particle velocity. Results (34) and (35) will
hold for such a system, provide conditions (11)-(16) hold.
We show next that these conditions hold.

Since the system is isolated, there is no net flow of par-
ticles in or out. Then conditions (11) and (12) hold by
definition. Moreover, normalization (10) holds because it
is consistent with (12) (as previously shown).

Condition (12) is now

prlWV(T, )| poundaries =0 - (37

We have to decide which of the two constituents p or v is
zero at the boundaries. If v=0 but p7#0 at the boun-
daries, this implies that once a particle locates at a
boundary it cannot move away from it. And since p70
there, ultimately every particle will locate there. The re-
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sult would be a degenerate collapse of the system into a
state where all particles remain piled up at the boun-
daries. We do not consider this kind of specialized sys-
tem. Hence, the alternative solution to (37) is taken gen-
erally to be v#0, but

p(rlt)lboundaries=0 . 38)

Since normalization condition (10) holds,

lim p(r|t)=0 (39)
r— o
faster than 1/r2. Hence, condition (13) holds.

Conditions (14) and (15) are now the same as condi-
tions (38) and (39), respectively, which already have been
shown to hold.

Finally, condition (16) holds because

Plnp=vp Inp

and of course
lim p Inp=0 . (40)
p—0

The zero limit for p is taken because of (38).
Hence, results (34) and (35) hold for this system of par-
ticles.

VII. QUANTUM-MECHANICAL PARTICLE

A particle is moving under the influence of a general
scalar potential function V(r). Its speed can be compara-
ble to that of light. It is confined to a space that has finite
or infinite bounds. Such a particle is known to obey an
equation of continuity of flow Eq. (11). Also, both p(r|t)
and P(r,?) are quadratic in a wave function ¢(r|t). The
exact nature of these relations depends upon the type of
particle present. For the Dirac spin- particle [10]

plx|t)=v¢*(r|t W(x|t)
and
P(r,t)=—cy*(r|t)[a]¥(r|t) .

Wave function (r|t) is a 4-vector. Also, ¥* denotes the
Hermitian conjugate of 9, and [a] is the usual 3-vector of
4X 4 matrices a,, a,, and a;, where the subscripts denote
x, y, and z components, respectively. We next show that
boundary conditions (12)~-(16) hold for such a system.

Since the particle cannot exist beyond the boundary,
the potential ¥ (r) must be infinite there. Also, the wave
function ¥ must continuously approach zero as r ap-
proaches the boundary [11],

(41a)

(41b)

li =0 .
r— bg::\dary ¢(r|t) 0 (42)

Then since both p and P increase quadratically as ¢ in
Egs. (41a) and (41b), necessarily
P(rl) | boundary =0 (43a)

and
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P(r, 1) lboundary =0 - (43b)

Hence, boundary conditions (12) and (14) are obeyed.
Also, because of Eq. (43b) normalization condition (10)
follows, as previously shown. This, in turn, implies prop-
erty (15). Properties (13) and (16) remain to be shown.

We turn to property (13), which requires a boundary at
infinity. Because property (15) holds, by Eq. (41a) ¥ must
fall off with » as 1/r or faster, and hence by Eq. (41b) P
falls off with r as 1/r2 or faster. Hence (13) is obeyed.

Finally, we consider property (16). By Eq. (41b), the x
component P; of P obeys

0001 4
0010||t

Pi=—ch¥s¥)* |5 1 0 o Y|’ “
100 0]y,

where we used the known [12] 4 X4 matrix for a;,. After
the indicated matrix products in (44), the result is

Pi=—c({vs 933+ 93 +45¢)) .
Then, also using Eq. (41a),

Pilnp=—c(Yi¢,+ 93¢+ Y3, + iy
XIn( 912+ 9|2+ (932 + [9,]%) (45)

According to condition (16), we are interested in the lim-
iting form of this expression as r — boundaries, where by
Eq. (43a) all components ¥;=0. We may first set
¥,=13;=01n (45), giving

Pllnp lboundary= —2 Re(¢f¢4)1n( |¢1|2+ |¢4|2) . (46)

The right-hand side is of the form O In 0, and so has to be
evaluated by a limiting process.

Denote a given boundary point by R. Expand each 1,
and 9, in Taylor series about point R, dropping all quad-
ratic and higher terms since limit r—R will be taken.
The result is

¥;(r|t)=v,;(R|t)+dr-V¢;(R[t) ,

@7
dr=R—-r, i=1,4,
where
limdr—0 (48)

now defines the boundary. The first right-hand term in
(47) is zero, since all ¥; =0 on the boundary. Then, sub-
stituting Eq. (47) into (46) gives

P Ip |youndary= —2¢ Re[(dr- V¢ )(dr-Vi,)]
XIn[ |dr-Ve >+ 1dr- Vil ]| ge—o -

(49)
Taking the limit dy =dz =0 gives
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P110p lpoundary = —2¢(dx PRe[ ($1, g ) [ (dx P[h, 17+ (dx)? |4 2] gy - (50)

This is of the form (Au) In (Bu), ¥ =(dx ). In the limit
u—0 it gives 0, as at Eq. (40). Retracing steps (44)-(50)
for either of the other components P,, P, gives the same
result.

In summary, the equation of flow (11) and the bound-
ary value conditions (12)-(16) hold, so that result (34) fol-
lows. [Note: However, Eq. (35) does not hold here, be-
cause in quantum mechanics H of Eq. (1) does not
represent Boltzmann entropy [13], a requisite for deriva-
tion of (35).] Result (34) states that, in quantum mechan-
ics, the maximum rate of change of disorder H™** is lim-
ited by the Fisher measure I of disorder.

VIII. SUMMARY

A system that obeys conservation of flow (11) and Diri-
chlet boundary conditions (12)—(16) has a maximum pos-
sible rate of entropy increase obeying Eq. (34). This
shows that the maximum rate is jointly proportional to
the rate of increase of the second moment, or spread, of

f

the probability law p(r|t), and to the Fisher information
1. The latter is the information in an observed position r
about the centroid position of the system. This result fol-
lows both for classical particle flow and for a particle
obeying Dirac’s formulation of relativistic quantum
mechanics.

A corollary of Eq. (34) is that, for classical particle flow
where the mean particle position is zero, the uncertainty
in locating a particle can never decrease with time. This
follows from additional use of the second law of thermo-
dynamics, and represents a case where a thermodynamic
law limits the ability to locate or measure.

We regard result (34) as an addendum to the second
law. That is, entropy shall increase, but (now) not by too
much.

There are many other phenomena obeying Eq. (11) of
flow, such as, e.g., charge-current flow in electromagne-
tism. To the extent that boundary conditions (12)-(16)
are obeyed, result (34) will follow for these phenomena as
well.
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